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Abstract
We study the topology of energy surfaces and obtain the bifurcation set for the
integrable problem of the motion of a rigid body in a fluid. We also describe all
bifurcations of Liouville tori and calculate the Fomenko–Zieschang invariant.
To do this we use methods of studying integrable Hamiltonian systems, for
which the Lax representation and separation of variables are not known. During
our study we reveal some new topological effects. In particular, we observe the
bifurcation of two tori into four, which had not been observed in mechanical
systems previously.

PACS numbers: 0240, 0230, 0545

1. Introduction

In his original paper [3] Chaplygin considered a problem that describes the particular case of
the motion of a rigid body in a perfect incompressible fluid. The fluid is unbounded in all
directions and is at rest at infinity; the body is bounded by a simply connected surface. The
body and the fluid are under a gravitational force; the weight of the body is equal to the weight
of the fluid displaced.

We consider the generalization of this problem: we assume that the body is bounded by
a multiply connected surface. Then this motion is described by the following Kirchhoff-type
system of equations:

ṡ1 = −(s3 − λ)s2 − cr2r3 + δr3 ṙ1 = s2r3 − 2s3r2

ṡ2 = (s3 − λ)s1 − cr1r3 − γ r3 ṙ2 = 2s3r1 − s1r3
ṡ3 = 2cr1r2 + γ r2 − δr1 ṙ3 = s1r2 − s2r1

(1)

where c, δ and γ are some constants. The parameter of the gyrostatic momentum λ can be
related to the circulation of the fluid through the holes inside the body. Here the vectors s and
r are called the momentum and the momentum force, respectively.
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System (1) can be viewed as Lie–Poisson (non-canonical Hamiltonian) dynamics on R
6:

µ̇i = {µi,H }
where µ = (s, r) ∈ R

6 and

H = 1
2 (s

2
1 + s2

2 + 2s2
3 ) + 1

2

(
c(r2

1 − r2
2 ) + 2γ r1 + 2δr2

)
is the energy (Hamiltonian) of the body–fluid system.

The Poisson bracket on R
6 is defined by

{G,K} (µ) = ∇G · P(µ)∇K
for differentiable functions G,K on R

6.
Here

P(µ) =
(
S R

R 0

)

S =




0 s3 + λ −s2
−s3 − λ 0 s1

s2 −s1 0


 R =




0 r3 −r2
−r3 0 r1

r2 −r1 0


.

The matrix P(µ) defines a Poisson structure on R
6. The two geometric first integrals of

(1)

F1 = r2
1 + r2

2 + r2
3 F2 = s1r1 + s2r2 + (s3 + λ)r3

are Casimirs of this structure.
The vector field (1) restricted to the four-dimensional level set

M4 = {
(s, r) ∈ R

6 : F1 = f1, f1 > 0, F2 = f2
} ∼= T ∗

S
2

is a two-degrees-of-freedom Hamiltonian system. Thus for Liouville complete integrability
of system (1) we need, except for the Casimirs F1, F2, and the Hamiltonian H , an additional
integral of motion.

Consider the function (Yehia [9])

F = (s2
1 − s2

2 + cr2
3 − 2γ r1 + 2δr2)

2 + 4(s1s2 − γ r2 − δr1)2

+8λ(s3 − λ)(s2
1 + s2

2 )− 8λr3
{
s1(2γ + cr1) + s2(2δ − cr2)

}
.

It is easy to show that

{H,F } = cF2I

where I = 8(λ(r2s1 + r1s2)+ r3(γ r2 + δr1 − s1s2)). For f2 = 0 this function is the first integral
of system (1). This is the subject of our study.

Remark. If c = 0, then the area integral f2 is not necessarily zero, and we come to the
problem of the motion of a heavy gyrostat under the Kowalevski conditions imposed on the
distribution of mass. The papers [6, 7] are devoted to the topological analysis of this problem.
For λ = 0, f2 = 0 we get the classical Chaplygin problem [3].

Note that with the help of some linear changes of variables, time and parameters, we can
make the value f1 of the geometric integral and the constant c equal to 1. These changes do
not influence the topological analysis of the problem, and in what follows we take f1 = 1,
c = 1.

In physics the recent revival of interest in classical mechanics relates to the desire to
understand the transition from classical to quantum mechanics. In particular, for quantization
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one of the tools is the representation of energy surfaces in terms of action variables [4]. To
study the global behaviour of actions we should know what happens to them under bifurcations.
The complete answer can be given on the basis of the Fomenko–Zieschang invariant.

In the paper we consider the case λ 
= 0 and δ = γ = 0. We study the topology of energy
surfacesQ3

h = {H = h}, obtain the bifurcation sets and describe bifurcations of Liouville tori.
We also calculate the Fomenko–Zieschang invariant.

The main problem we faced is that there is nothing known about separation of variables and
Lax representation with a spectral parameter. This fact makes the study of this generalization
of the Chaplygin case very difficult. That is why this case has not been investigated before.
The present study uses the method developed in [7] to analyse integrable mechanical systems
of high complexity, for which separation of variables is not known. The combination of this
machinery with computer modelling of Liouville tori appeared to be very fruitful.

During our study we reveal some new topological effects. In particular, we observe
bifurcation of two tori to four, which has not been seen in the dynamics of a rigid body
previously.

2. Necessary definitions

The momentum mapping is a mapping � : M4 → R
2(f, h) that assigns to a point of the

manifold the pair of values of the functions F and H at this point: x → (
f = F(x), h =

H(x)
)
. The set of singularities of the momentum mapping is the set of points of M4, at

which the functions F and H are dependent: K = {x ∈ M4 : rank d�(x) < 2}. The image
� = �(K) of this set is called the bifurcation set. ByQ3

h = {x ∈ M4|H(x) = h} we denote
the energy surface. In what follows we assume that this surface is non-singular and compact.

In [5] Fomenko and Zieschang obtained the Morse-type theory for integrable Hamiltonian
systems. Within the framework of this theory global behaviour of any system restricted to an
energy surface can be described with the help of some graph. The links of the graph correspond
to one-parameter families of non-singular Liouville tori, and its vertices (i.e. atoms) describe
bifurcations of these tori at singular levels of the integral F . This graph is denoted byW(Q3

h)

and called the Fomenko invariant, or the molecule. Besides, if we complete the molecule W
with some numerical marks r, ε, n, we get the Fomenko–Zieschang invariant, or the marked
molecule, which is denoted byW ∗(Q3

h).
The simplest bifurcations (atoms) are denoted by the characters A, B, A∗. Here we

describe these bifurcations: A, a torus shrinks to a circle; B, a torus splits into two tori (or,
conversely, two tori glue together); A∗, a torus bifurcates into another torus. In our problem
we also meet atoms C2 and P4. The first of them describes a symmetric bifurcation of two tori
into two tori, and the second—a symmetric bifurcation of two tori into four tori. The atoms
C2 and P4 are illustrated in figure 1.

Further definitions are related to stationary points of system (1). The rank of a point
x ∈ M4 is the rank of the momentum mapping at this point. Let x ∈ M4 be a point of zero
rank, and suppose�(x) = (f, h). Let U be a small regular neighbourhood of the point (f, h)
such that its boundary ∂U intersects the bifurcation diagram transversely at a minimal number
of points. The loop molecule W(�−1(∂U)) completely describes the topology of Liouville
foliation in the neighbourhood of the point of zero rank. The zero-rank multiplicity of the
point (f, h) is the number of points of zero rank in the pre-image�−1(f, h). All saddle-saddle
singularities of zero-rank multiplicity two are classified in [1]. The results are represented in
the form of a list of loop molecules. One of these molecules that contains atoms C2 and P4 is
illustrated in figure 2 (see also figure 3). We will meet this molecule in what follows.
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Figure 1. (a) Atom C2; (b) atom P4.

Figure 2. Loop molecule containing atoms C2 and P4. Figure 3.

3. Bifurcation set

To find the bifurcation set we need the following lemma (the proof can be found in [8]).

Lemma 3.1. Any fibre of the Liouville foliation intersects one of the hyperplanes r1 = 0,
r2 = 0.

Theorem 3.1. In the plane R
2(f, h) the bifurcation set � is the union of curves *i , i = 1, 5,

where

*1:

{
f = 0

h � − 1
2

*2: f = −8λ2(2h + 1) h � − 1
2

*3:



f = −8λ2(2h− 1) h � 1

2 − λ2 if 0 < λ � 1
2

h � −λ2 − 1
2 + 2λ if 1

2 � λ � 1

h � 1
2 if λ � 1

*4: f = (2h + 1 − 2λ2)2 h � − 1
2 + λ2

*5: f = (2h− 1 − 2λ2)2 h � λ2.

Proof. We study singularities of the system of the first integrals F , H , F1 and F2. To obtain
the critical points of the momentum mapping we use the condition rank J < 4, where J is the
Jacobi matrix of the mapping F ×H × F1 × F2.

The condition rank J < 4 is valid if and only if all ,ijkl are equal to zero. Here ,ijkl
are determinants of the matrices consisting of columns of the Jacobi matrix J with numbers
1 � i < j < k < l � 6.
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Figure 4. Bifurcation diagrams and families of tori.

Suppose s1 = 0. Then the system of equations ,ijkl = 0 can be reduced to one of the
following conditions:

s2(s3 − λ) + r2r3 = 0 (2)

or

r1 = 0 (3)

{r2(s3 + λ)− s2r3} · (s2
2 − r2

3 + 4λs3) = 0. (4)

In the case of (2) the corresponding critical values are *1 and *5. Note that for h < − 1
2

the integral manifold Jf, h = {x ∈ M4 : F = f,H = h} is empty. Suppose that equalities
s1 = 0, (3) and (4) are valid. Introduce new variables:

p1 = r2(s3 + λ)− s2r3 q1 = s2
2 − r2

3 + 4λs3.

The values of the first integrals F , H and equation (4) in terms of the variables (p1, q1) take
the form

2p2
1 − q1 = 2h + 2λ2 + 1 q2

1 = 16λ2h + 8λ2 + f (5)

p1 · q1 = 0. (6)

If p1 = 0, then we have the segment of the parabola *4; if q1 = 0, then we have the half-line
*2, since the Hamiltonian is bounded from below.
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Figure 5. Bifurcations of Liouville tori.

Figure 6. The topological type of Q3
h. The second argument in the notation ( · , ·) refers to the

indexing of Liouville type ofQ3
h.

The case s2 = 0 is studied in a similar way. The cases s1 = 0 and s2 = 0 give us all
the bifurcation curves *1–*5. It remains to show that there are no other bifurcation curves.
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By lemma 3.1 it is enough to consider the cases r1 = 0 and r2 = 0. Substituting r1 = 0 or
r2 = 0 into the equation,ijkl = 0, after some manipulations we obtain the same relationships
between f and h. The theorem is proved. �

Corollary 3.1. The bifurcation set �\*1 is a part of surfaces of multiple roots of the
polynomials R1,2(p) = {

2p2 − 2h∓ 1 − 2λ2
}2 − 16λ2h∓ 8λ2 − f .

Proof. We can obtain the polynomial R1(p) after eliminating the variable q1 from system
(5). By virtue of (6), the polynomial R1(p) has multiple roots. The polynomial R2(p) can be
obtained in the same way. �

The qualitatively different types of sets (bifurcation diagrams) � are demonstrated in
figure 4: 0 < λ < 1

2 ; 1
2 < λ < 1; λ > 1. By points of intersection H1, H2, U, S1, S2, S3 and

tangency e1, e2, h1, h2 the bifurcation curves *1, . . . , *5 can be cut into curves α, β1, β2, β3,
γ1, . . . , γ6, σ1, σ2, δ1, δ2, δ3. Clearly, the type of bifurcation of Liouville tori is the same on
each curve and may change when we go through the singular points.

To find the number of Liouville tori in each connected component of the domain R
3 \�

we use computer modelling methods and the fact that any Liouville torus intersects one of
the hyperplanes r1 = 0, r2 = 0 (see lemma 3.1). All Liouville tori are combined in families
denoted by (1), . . . , (7) (see figure 4). We say that two tori belong to the same family if
they can be connected by a trajectory in the image of the momentum mapping consisting of
non-degenerate Liouville tori. In each family we have the following number of Liouville tori:
(1), 2T 2; (2), 2T 2; (3), 2T 2; (4), 2T 2; (5), T 2; (6), T 2; (7), T 2.

4. Bifurcations of Liouville tori and the topology of Q3
h

In the plane R
2(f, h) we draw horizontal lines denoted by A, B, C, D, E, F , G, H , I, i.e.

we fix different values of the energy (see figure 5). In the inverse image inM4 we obtain the
energy surfaces with qualitatively different topology of Liouville foliation. Thus, we have nine
Liouville types of energy surfaces. We denote these Liouville types by the same characters.
Note that the topology of an energy surface may not change when we go through singular
points on the bifurcation diagram. This is true, for example, for the point e1: the topology of
the energy surfaces of types A and B is the same, as will be proved in the following theorem.

Theorem 4.1. For different values of h and λ the energy surface Q3
h has the following

topological type: 2S
3, S

1×S
2,N3 = (S1×S

2)#(S1×S
2)#(S1×S

2) and RP 3. The topological
types ofQ3

h and the separating curves (marked by bold lines) are illustrated in figure 6.

Proof. Topological type of the energy surfaceQ3
h = {H = h} can be studied with the help of

the projection π onto the Poisson sphere S
2 = {r2

1 + r2
2 + r2

3 = 1}. This projection takes the
surfaceQ3

h onto a domain on the Poisson sphere given by the condition

ϕλ(r) � h (7)

where

ϕλ(r) = 1

2
(r2

1 − r2
2 ) +

λ2r2
3

2 − r2
3

.

Here the surface Q3
h is stratified over this domain with the circle fibre contracted to a point

over the boundary.



2156 O E Orel and P E Ryabov

Table 1. Nondegenerate singular points.

Topological
Point Type structure Loop molecule

H1 centre–centre A× A

H2 centre–centre A× A

U saddle–saddle (B × P4)/Z2

S1 centre–saddle A× C2

S2 centre–saddle A× P4

S3 centre–saddle A× C2
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Table 2. Degenerate singular points.

Point Type of degeneracy Loop molecule

e1 elliptic period-doubling

e2 elliptic pitchfork

h1 hyperbolic pitchfork

h2 elliptic pitchfork

h2 hyperbolic pitchfork
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Table 3. Gluing matrices.

The function ϕλ(r) is the Morse function on the sphere. With the help of indices of the
critical points of this function we obtain the topological types of domains (7) on the Poisson
sphere: they are ∅, two discs D2, the annulus S

1 × R
1 (the disc D2 with one hole), the disc

D2 with three holes, the sphere S
2. The corresponding surfacesQ3

h are homeomorphic to 2S
3,

S
1 × S

2, N3 = (S1 × S
2)#(S1 × S

2)#(S1 × S
2) and RP 3. The theorem is proved. �

Now we show how the types of bifurcations can be established in the most complicated
situations, i.e. for the curves γ2, γ3, δ2, δ3.

We show that for 0 < λ < 1 the curve γ2 corresponds to the atom A∗. As was proved
in theorem 4.1, for h < 0 the manifold Q3

h is the union of two spheres S
3. Consequently,
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Table 3. Continued.

in particular, at the curve γ2 there are two separated bifurcations of a torus to a torus. For
0 < λ < 1 the inverse image of this curve is the critical set s1 = s2 = r3 = 0, which can be
represented in space (r1, r2, s3) as the intersection of two surfaces:

π1,2:

{
s2

3 + r2
1 = a2

s2
3 − r2

2 = a2 − 1

where a =
√
h + 1

2 . At the curve γ2 we have λ < a < 1. Putting

s1 = s2 = r3 = 0 (8)

in (1), we find the parametric representation of the closed curves π1,2
∼= S

1 in terms of the
Jacobi functions with the modulus a

π1,2:



r1 = ±a sn ϕ

r2 = ±dn ϕ

s3 = −a cn ϕ where ϕ = 2(t − t0).
We consider solution (8) and π1. Through the point ϕ = 0 we draw the hyperplane r1 = 0,
which is orthogonal to this trajectory. Its intersection with the level J0, h = {x ∈ M4 : F =
0, H = h} is determined by the following equations:

r2
2 + r2

3 = 1 s2r2 + (s3 + λ)r3 = 0 s2
1 + s2

2 + 2s2
3 + r2

3 = 2a2

(s2
1 + s2

2 )
2 + 2r2

3 (s
2
1 − s2

2 ) + r4
3 + 8λ(s3 − λ)(s2

1 + s2
2 ) + 8λr2r3s2 = 0.

Taking the value r3 as a small parameter ε in the neighbourhood of the trajectory, we obtain
the parametric formulae for the surface J0, h:

r1 = 0 r2 = 1 − 1
2ε

2 r3 = ε

s2 = −ε(λ− a) s3 = −a +
ε2

2(λ + a)
s1 = ±

√
a − λ
a + λ

(1 + λ2 − a2).

Clearly, this is the ‘cross’. Therefore, V = A∗. For the other solution (8) and π2 the arguments
are the same.
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Table 4. Marked molecules.

It can be shown that for 0 < λ < 1 the point U , with coordinates (f, h) = (0, 1
2 ),

is a ‘saddle–saddle’ point of zero-rank multiplicity two (its pre-image contains two non-
degenerate points of zero rank). In the neighbourhood of this point the bifurcation diagram is
homeomorphic to two transverse intervals with a common point. The loop molecule has the
form illustrated in figure 3. All loop molecules that correspond to the saddle–saddle points
of multiplicity two are described in [1]. The complete list contains 39 molecules. There are
exactly two molecules (V1, V2) in the list that fit our case: they are (P4, C2) and (L1,D2).
In any case, as V3 we have the bifurcation 2B (therefore, we have the bifurcation 2B at
γ3).
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Table 4. Continued.

In order to distinguish the atoms C2 and D2, we use one of the most important properties
of atoms—the symmetry. It is known that the atom D2 has no symmetries, interchanging
singular one-dimensional orbits, whereas the symmetry group of the atom C2 is Z2 × Z2 [1].
In our problem we can represent this symmetry group in an explicit form.

Obviously, the system of first integrals possesses the following symmetries:

• τ1 : (s1, s2, s3, r1, r2, r3)→ (s1, s2, s3,−r1,−r2,−r3)
• τ2 : (s1, s2, s3, r1, r2, r3)→ (−s1, s2, s3,−r1, r2, r3)
• τ3 : (s1, s2, s3, r1, r2, r3)→ (s1,−s2, s3, r1,−r2, r3)
• τ4 : (s1, s2, s3, r1, r2, r3)→ (−s1,−s2, s3, r1, r2,−r3).

Since all symmetries preserve the first integrals and the level surfaces, they give rise to
symmetries of atoms (to each other or to themselves). Since the pre-image of each point
of the curve δ3 is connected, these are symmetries of the atom V2 to itself. It can be shown
that the symmetries τ1 and τ2 interchange singular trajectories. Therefore, the bifurcation V2

is C2.
Consequently, by the theorem on classification of ‘saddle–saddle’ points of zero-rank

multiplicity 2 [1] the loop molecule with the given atoms is unique; it is illustrated in figure 2.
Thus, at δ2 we have the bifurcation P4.

Bifurcations of Liouville tori at the bifurcation curves are illustrated in figure 5. The
information concerning topological types of singular points of the momentum mapping and
their loop molecules is indicated in tables 1 and 2.

5. Calculation of the Fomenko–Zieschang invariant

The methods of calculation of the Fomenko–Zieschang invariants were developed in [1, 2].
With the help of these methods the Fomenko–Zieschang invariant was calculated for the
Kowalevski problem [2]. In this section we use the results obtained in [2], saving basic
notation.

On any link of a molecule there are two admissible coordinate systems (λ, µ), coming
from two atoms connected by the link. The first cycle is uniquely defined by the atom. For the
atoms A∗, B, C2 and P4 it becomes the unstable saddle trajectory when the torus approaches
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the singularity; for the atom A it shrinks to a point when the torus approaches the circle. The
second cycle complements λ to form a basis. The transition matrices from one admissible basis
to the other is called the ‘gluing matrix’. It is not uniquely defined, but it has the invariants r ,
ε and n, which do not depend on the choice of bases.

The method of loop molecules [2] is as follows. We consider molecules corresponding
to closed loops around singular points in the image of the momentum mapping and identify
admissible coordinate systems for the Liouville families of tori associated with the atoms
of those molecules. After this we try to ‘glue’ loop molecules together to obtain global
information.

Denote by Qζ the inverse image of a small segment transverse to the curve ζ . Now we
represent admissible coordinate systems on boundary tori ofQγ2 ,Qγ3 ,Qδ2 ,Qδ3 for the singular
point U :

Here we use the following notation. The bifurcations (atoms) are indexed by the
corresponding bifurcation curves. The cycles λ become hyperbolic unstable trajectories (or
shrink to a point), when the tori approach the bifurcation curve; they are indexed by the
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corresponding curves. The arrows indicate directions of increase of the additional integral;
indices (i) denote families of tori (see figure 4).

In table 3 for all Liouville types of Q3
h we show molecules with gluing matrices. For

example, the gluing matrix for the link C2 −→ B can be obtained as follows. On tori of the
families (5) and (6)we have two admissible coordinate systems: (λδ3 , λγ3 +λδ3) and (λγ3 , λδ3).
The transition from the first basis to the second one is(

λγ3

λδ3

)
=
(

−1 1

1 0

)(
λδ3

λγ3 + λδ3

)
.

This gives us the gluing matrix.
After we find the gluing matrices (table 3), we can easily calculate the marks r , n and ε

with the help of the standard rule described in [1]. The results are given in table 4.
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